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Abstract. Multiconfiguration Dirac-Fock as well as semiempirical calculations of decay rates of forbid-
den transitions within the ground 6s26p2 configuration of neutral lead are reported and compared with
relativistic Hartree-Fock results as well as with available experimental data.

PACS. 31.10+z Theory of electronic structure, electronic transitions, and chemical binding – 31.15.Ar Ab
initio calculations – 31.15.Ct Semi-empirical and empirical calculations (differential overlap, Hückel, PPP
methods, etc.)

1 Introduction

Decay rates calculated for strong transitions are in rea-
sonable agreement with experiment, but in the case of
weak transitions the predictions often strongly disagree
with the experimental data. It results from the fact that
weak transition rates are especially sensitive to even small
modifications to the wave functions and a careful choice
of the theoretical method to be used is required.

The 6s26p2 ground configuration of lead gives rise to
the five levels 1D2,

3P2,1,0 and 1S0. Since electric-dipole
transitions between states of the same parity are forbid-
den, all the 6s26p2 excited levels are metastable. Weak
magnetic-dipole (M1) and electric-quadrupole (E2) tran-
sitions between these levels are permitted in the second-
order radiation theory.

A complete list of M1 and E2 transition probabilities
within the 6p2 configuration of Pb I has been published by
Garstang [1]. However, the calculated rates strongly dis-
agree with experiments [2,3] mainly because of very rough
estimate of the adopted sq value. Calculations presented
in [4] better agree with experiment.

Recently, several papers using multiconfigurational
methods have been published. Two of them, by Dzuba
et al. [5] and Chou et al. [6] dealt with the 3P1-

3P0 M1
transition rate, which is of great importance in the inves-
tigation of parity-nonconserving effects in atoms. Dzuba
et al. [5] used the relativistic Hartree-Fock (HFR) method
improved upon by including polarisation and correlation
corrections. Chou et al. [6] obtained the result by using
the multiconfiguration relativistic random-phase approxi-
mation (MCRRPA) method.

a e-mail: fizjk@univ.gda.pl

Table 1. Comparison between experimental and theoretical
results for E2 contributions in mixed (M1+E2) transitions in
Bi I.

Transition λ(nm) E2 admixture (%)

Experiment HFR theoryd Semiempirical
valuese

2P3/2-
2D5/2 564.0 28± 3a 34 24

2P3/2-
2D3/2 459.7 2.5± 0.5b 3.3 2.7

2P1/2-
4S3/2 461.5 6.5± 0.5b 23 7.3

2D5/2-
4S3/2 647.6 16± 1b 35 17

17± 1c
2D3/2-

4S3/2 875.5 2.25± 0.5a, f 1.3 0.5
1± 1c

a [24].
b [25].
c [10].
d [7].
e The results were obtained by using the intermediate-
coupling wave functions from [9] and the experimental
value of the radial integral sq = 8.7 ea20 from [10].
f The result for 875.5 nm transition is probably too high
and can be deformed by systematic error [26].

The most extensive multiconfiguration calculations
of multipole transition rates for states within the 6pk

(k = 1, . . . , 5) configurations in the thallium, lead, bis-
muth, polonium and actinium sequences up to radon have
been performed by Biémont and Quinet [7] using the
HFR method. In the HFR method the transition rates
are computed in intermediate coupling with basis func-
tions obtained in the framework of the Slater-Condon the-
ory, where electrostatic and spin-orbit integrals are eval-
uated so as to fit the observed energy levels. The HFR
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energies obtained in [7] appear in very good agreement
with experimental energy levels, but the agreement with
experimental data concerning multipole transition rates
for neutral atoms is not that satisfactory. For instance in
the case of transition rates for the ground configuration
of Bi I the experimental transition probability A(2D3/2-
4S3/2) = 22.5± 1.4 s−1 [8] is almost 50% lower than the
theoretical result. Furthermore, there is also a large dis-
crepancy between measured and calculated admixtures of
E2 radiation in mixed transitions (see Tab. 1). As fol-
lows from the table much better agreement (except for the
2D3/2-

4S3/2 transition) can be achieved in semiempirical
single-configuration calculation, where we used the Land-
man and Lurio [9] intermediate-coupling wave functions
and experimental value of the radial integral sq of r

2 be-
tween single-electrons states, sq = 8.7ea20 from [10]. In the
case of Pb I the lack of experimental data has not allowed
us to verify the HFR results directly. The most precisely
determined experimental result concerning the forbidden
transitions within the 6s6p2 configuration of Pb I is the
ratio of intensities of the 461.9 nm and 531.5 nm lines.
The experimental value 5.06 ± 0.25 [2] is larger than the
HFR result I461.9/I531.5 = 3.26.

The HFR method allows to consider a large number
of interacting configurations, but only approximately ac-
counts for the relativistic effects, which are crucial for
heavy elements. In the recent years, the multiconfiguration
Dirac-Fock (MCDF) method has played an important role
in calculations of atomic structure and transition rates for
various atomic systems. The MCDF method is an ab ini-
tio and fully relativistic method and is expected to provide
accurate results for heavy atoms and ions. On the other
hand, the convergence problems in MCDF calculations
strongly limit the consideration of electron-correlation ef-
fects.

In this paper we apply the MCDF method to the
forbidden transitions in Pb I. For comparison we also
performed semiempirical single-configuration calculations
concerning cumulative correlation effects of perturbing
configurations represented by appropriate effective param-
eters. The results obtained are compared with HFR results
as well as with available experimental data.

2 MCDF calculations

In the calculations the unpublished numerical code
GRASP2 [11] has been used. This is the newest version
of the GRASP code described by Dyall et al. [12]. A
new element in GRASP2 is a radial part of the program,
now based on the algorithm introduced by Sienkiewicz
and Baylis [13]. It accelerated the convergence of the self-
consistent field (SCF) process.

The MCDF method is based on a fully relativistic
Dirac-Coulomb Hamiltonian:

ĤDC =
∑
i

ĥi +
∑
i<j

1

|r̂i − r̂j |
, i, j = 1, . . . , N . (1)

Here ĥi is a single-electron Dirac Hamiltonian which can
be written as

ĥi = c

3∑
k=1

αikp̂
i
k + (βi − 1)c2 + Vnuc(r̂i) , (2)

where αi and βi are usual Dirac matrices, c is the velocity
of light and Vnuc is the potential of the nucleus.

In the MCDF formulae the atomic state function is
given by a multiconfiguration wave function of the form

| ΓPJM〉 =
nc∑
r=1

crΓ | γrPJM〉 , (3)

where P is the parity of the atomic state, J the total angu-
lar momentum, M the magnetic number, and crΓ are con-
figuration mixing coefficients. Each | γrPJM〉 is an eigen-
state of total angular momentum and parity operators,
constructed as a Slater determinant from relativistic one-
electron orbitals. The label γr represents all information
(occupation of different subshells, coupling schemes, se-
niority numbers) required to define the configuration state
function uniquely. In the MCDF method the radial parts
of functions | γrPJM〉 as well as the mixing coefficients
crΓ are generated in the SCF process.

The MCDF calculations have been performed with
various basis sets. The choice of these sets was based
on studies of other authors. Flambaum et al. [14] and
Biémont and Hansen [15] found that the admixture of the
highly excited 6p4 configuration to the ground 6s26p2 con-
figuration is the most important. The multiconfiguration
calculations are hampered by severe convergence problems
in the SCF process, which increase with the number of
configurations included. We present the results of calcula-
tions for the following basis sets:

MCDF (1) 6s26p2,

MCDF (2) 6s26p2 + 6p4,

MCDF (3) 6s26p2 + 6p4 + 6s26p7p,

MCDF (4) 6s26p2 + 6s26p5f .

There are several types of calculations, regarding the
choice of the energy functional, available with the code
used here. They are described in detail by Grant [16]. All
our calculations have been performed in the average level
(AL) scheme, in which the energy functional is averaged
over a set of states with the same total angular momentum
J and the same parity. The spin-orbitals used are common
for all the configurations involved in the calculations. The
choice of the AL option was suggested by calculations per-
formed by Rose et al. [17] for Bi I and by Bieroń et al. [18]
for Pb I, where the best results were obtained for the AL
version.

In the present calculation higher order relativistic
corrections have been included. Among them the domi-
nant contribution comes from the Breit interaction yield-
ing a dynamic correction to the static Coulomb inter-
action. Furthermore, the effect of a finite nuclear size
has been included. The Fermi statistical model has been
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Table 3. Observed and calculated energy levels of the ground configuration of Pb I.

Calculated energies

Energy level Experiment MCDF (1) MCDF (2) MCDF (3) MCDF (4)

3P0 0 0 0 0 0
3P1 7819.35 6763.94 6474.75 6558.51 6357.46
3P2 10650.47 10538.19 10186.31 10205.90 10304.39
1D2 21457.90 21824.18 20590.42 20498.79 21476.56
1S0 29466.81 32686.72 28964.42 28467.70 33576.76

√∑
i(Ei − E

exp
i )2 3410 1740 1925 4376

used with the root-mean-squared radius of the nucleus
rrms = 0.836 A1/3 + 0.570 fm [19], where A is the atomic
mass number.

The calculated ab initio transition probabilities are
presented in Table 2. The E2 transition rates were com-
puted using fully relativistic forms of the transition op-
erators in both the Babushkin and the Coulomb gauges
(respectively, the “length” (L) and the “velocity” (V ) for-
malisms in non-relativistic approximation). Discrepancies
between these two gauges are a consequence of the fi-
nite basis approximation together with the SCF approach
(see [20] for details). The choice of the gauge is a very dif-
ficult problem. In many cases better results were obtained
using the “length” form. In contrast, Grant [20] has esti-
mated that the“velocity” gauge, which plays a privileged
role for the MCDF variational calculations, should be pre-
ferred. Besides, some other authors recommend values of
transition rates lying between the L and the V gauges.
Then, comparison with experimental values is always re-
quired.

The computed energies of states under consideration
are presented in Table 3. For the energy levels we used
the data given by Moore [21]. At the bottom of the table
the total sum of departures from the experimental values
for each version of the calculation employed is presented.
It provides some information about the level of accuracy
of the calculated transition rates. In the case of MCDF(2)
and MCDF(3) the agreement between the calculated and
experimental energies is satisfactory. With the exception
of the 3P1, for each of the energy levels the departures from
the experimental values are in the range of 3÷4% (for the
3P1 level the departure is about 17%). Table 3 shows that
the inclusion in the calculation of the most strongly inter-
acting configuration 6p4 significantly improves the agree-
ment with the observed energy levels in comparison with
the MCDF(1) version and that mixings with the excited
6s26p7p and 6s26p5f configurations are of minor impor-
tance.

From Table 2 it follows that also for calculated tran-
sition rates the mixing between the 6s26p2 and 6p4 con-
figurations plays an important role. The inclusion in the
calculation of the 6s26p7p configuration in the MCDF (3)
version causes only small changes. However, they are more
significant for E2 than for M1 rates. The 6p4 configura-
tion proved to have the largest contribution among all
the admixed configurations, but the mixing rate is not as

Table 4. E2-transition probabilites (in s−1) calculated by us-
ing the MCDF and CI methods.

E2-transition rates

Transition λ(nm) CI MCDF(3)

1S0-
1D2 1248.6 0.08V 0.008V

0.14L 0.15L
1S0-

3P2 531.5 2.40V 3.10V

25.50L 24.41L
1D2-

3P0 466.0 0.39V 0.42V

1.05L 1.10L
3P2-

3P0 938.9 0.29V 0.34V

0.19L 0.18L

high as one might have expected. The contribution from
all interacting levels of the 6p4 configuration to the ground
6s26p2 3P0 state was found to be 0.8%. Mixings between
6s26p2 and other excited configurations involving 5f elec-
trons are much weaker. As an example we present result
in the version MCDF (4).

The changes caused by the inclusion in the MCDF cal-
culations of the successive configurations are more evident
in transition rates calculated with experimental values of
the transition energies. Here, differences between values
obtained in sequential versions of calculations are only ef-
fected by modifications of the transition amplitude in the
matrix element. Since the energy of the 3P1 level was not
well approximated in our calculations, the differences be-
tween several rates presented in (T ) columns of Table 2
in comparison with their counterparts in (E) columns are
significant.

3 CI calculations

The effect of the 6s, 6p → 6d excitations was analysed
separately in the relativistic configuration interaction (CI)
approach. Two-step calculations were carried out. Firstly,
the single spin-orbitals were calculated by means of the
self-consistent-field method. Next, these atomic orbitals
were used to construct multiconfigurational 6s26p2+6p4+
6s26p7p+6s6p26d+6s26d2+6p26d2+6s27p2+6p27p2 state
functions by performing the configuration-interaction cal-
culations. As in the case of HFR calculations [7] the choice
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Table 5. Calculated semiempirical transition probabilities for
the ground 6s6p2 configuration of Pb I (in s−1).

M1-transitions E2-transitions

Transition λ(nm) Semi- HFRa Semi- HFRa

empirical empirical

1S0-
1D2 1248.6 0 0 0.56 0.42
3P2 531.5 0 0 17.33 18.66
3P1 461.9 70.10 52.91 0 0

1D2-
3P2 925.3 12.76 10.58 0.78 0.95
3P1 733.2 16.65 14.45 0.69 0.73
3P0 466.0 0 0 0.12 0.17

3P2-
3P1 3532.2 0.16 0.40 2.8× 10−4 1.3× 10−3
3P0 938.9 0 0 0.25 0.49

3P1-
3P0 1278.9 7.50 7.85 0 0

a [7].

of configurations for the basis set was based on the Layzer
complex concept. Results of such an analysis for E2 transi-
tions with∆J = 2 are presented in Table 4. For these tran-
sitions a large difference appears between the Babushkin
and the Coulomb gauges in the MCDF calculations. How-
ever, using the CI approach with a larger number of config-
urations the disagreement between these two formalisms
was not reduced. Moreover, it caused only small changes
of the calculated rates (considering the discrepancy be-
tween different gauges) in comparison with the MCDF(3)
results. The exception makes only the value of the 1S0-
1D2 rate in the “velocity” formalism, which is 10 times
larger in the CI calculation. It seems that the correlation
effects, which could improve the agreement between dif-
ferent gauges, arise from mixing between 6p2 and a very
large number of weakly interacting configurations.

4 Semiempirical transition probabilities in
single-configuration approximation

The results of the MCDF calculations show that the
ground configuration of Pb I may be regarded as a pure
configuration. All the states of this configuration were
found to be pure with percentage contribution of the lead-
ing configuration exceeding 98%. This conclusion follows
also from the analysis of sums of the gJ factors for J = 1
and J = 2. Therefore, for comparison with the HFR and
MCDF results we performed semiempirical calculations
in the single-configuration approximation. The results ob-
tained for the similar case of Bi I and presented in Ta-
ble 1 show that calculations performed by using the fit-
ting procedure in the single-configuration approximation
give more reliable transition rates than multiconfigura-
tional calculations.

In the calculation presented here, the effective elec-
trostatic spin-orbit interaction represented by the Q(2)

parameter introduced by Goldschmidt et al. [22] was in-
cluded. The Q(2) parameter allows to consider a signif-
icant part of the magnetic interaction, provided by the

Table 6. Comparison between observed and calculated inten-
sity ratios of multipole lines in Pb I.

I461.9/I531.5 I466.0/I733.2 I925.3/I733.2

Experiment 5a 0.023a 0.84a

5.06 ± 0.25b

Theory

MCDF (1) 3.64(T) 0.061(T) 0.68(T)

4.79(E) 0.076(E) 0.80(E)

MCDF (2) 7.36(T) 0.084(T) 0.69(T)

6.50(E) 0.115(E) 0.87(E)

MCDF (3) 5.58(T) 0.109(T) 0.70(T)

4.64(E) 0.147(E) 0.87(E)

Semiempirical 4.65 0.011 0.62
HFR 3.26 0.018 0.60

Letters in parentheses label ratios for transition rates cal-
culated with theoretical (T) and experimental (E) ener-
gies.
a [3].
b [2].

Breit equation, and which was neglected in earlier calcu-
lations [4]. A least-squares fit to the experimental energy
levels treating the Slater integrals, spin-orbit constant, α
and Q(2) as adjustable parameters yielded the following
values: F0 = 16806.1 cm−1, F2 = 888.6 cm−1, ξp =

7714.4 cm−1, α = −249.3 cm−1 and Q(2) = 2253.5 cm−1.
The calculated energy levels agree exactly with observa-
tion as a consequence of the fact that the number of energy
levels is equal to the number of free parameters. The value
of the radial integral sq = e

∫∞
0

P6pr
2P6pdr needed for

computation of the E2 transition rates was deduced from
the observed M1-E2 interference effect on the 733.2 nm
line [23]. This yielded sq = 12.24±1.59 ea20. So determined
the sq value is independent of the choice of the intermedi-
ate coupling coefficients. Results of calculations are shown
in Table 5 together with the HFR results.

5 Discussion of the results

The M1 transition probabilities calculated with experi-
mental values of the transition energies in the MCDF(3)
version agree with the HFR results within 20–30%, al-
though in the case of the weakest 3P2-

3P1 transition the
difference reaches 50%. Larger discrepancy appears for the
E2 components. If we use, for AE2 rates, the mean values
between both the L and the V gauges, the differences be-
tween MCDF(3) and HFR results reach 80%, although
again, the largest discrepancy appears for the 3P2-

3P1
transition, which is an order of magnitude lower than the
HFR result.

For most of the E2 rates the agreement between
semiempirical and HFR results is very good, particularly
if we take into account the error bar connected with the
sq value. The largest difference appears only for the weak-
est 3P2-

3P1 transition, which is an order of magnitude
lower than the HFR result. For M1 rates the differences
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between semiempirical and HFR results are more signifi-
cant. For most of the transitions the agreement is within
20%. However, again in the case of 3P2-

3P1 the difference
reaches 40% and in the case of 1S0-

3P1 (461.9 nm) the
semiempirical M1 rate is 25% bigger.

The M1 3P1-
3P0 transition rate interesting for the

parity-violating experiment was also calculated by Dzuba
et al. [5] and Chou et al. [6]. The M1 transition amplitude
calculated by Dzuba et al. [5] equals −0.741 µB. It corre-
sponds to AM1 = 7.08 s−1 and f = 5.208×10−7 au which
are in disagreement with the AM1 and f values quoted by
Chou et al. [6] and Biémont and Quinet [7]. The oscillator
strength obtained by Chou et al. [6], f = 5.152×10−7 au,
corresponds to AM1 = 7.00 s−1.

Calculated transition probabilities can be tested by
comparison with experimental intensity ratios. This is
done in Table 6 (for AE2 rates, in calculated intensity
ratios we used mean values between both the V and the
L gauges). The most important test is a comparison be-
tween calculated and experimental values for I461.9/I531.5.
The ratio obtained in the MCDF(1) and MCDF(3) ver-
sions agree better with the observed value than the HFR
result. It is caused by a 20% larger M1 rate (461.9 nm)
obtained in the MCDF calculations.

Moreover, a 4.8% admixture of E2 radiation in the
mixed 733.2 nm transition, obtained in HFR calcu-
lations, seems to be slightly too high, although the
value is in the upper limit of the experimental result
4±1% [23]. In MCDF calculations, for the transition 1D2-
3P1 (733.2 nm), the calculated contribution of E2 radia-
tion is in the range between 3.6%, for MCDF(3), and 4.7%
for MCDF (1), in good agreement with the experimental
value.

6 Conclusions

The results show that even a very limited effect of config-
uration mixing considered in the calculation significantly
improves the agreement of calculated transition energies
with experiment. The situation is more complex in the
case of transition probabilities. The influence of admixed
configurations is very weak and their limited inclusion in
the calculations does not necessarily improve the agree-
ment with experiment, even if the calculated energy levels
better agree with observation.

The calculations were carried out in the Computer Centre of
the University of Gdańsk and in TASK. The work was sup-
ported by the KBN Committee (Grant # 2 P302 084 07).
P.H. acknowledges support from the Foundation for the Polish
Science.
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